180 research outputs found

    Model and simulation of a solar kiln with energy storage

    Get PDF
    A solar kiln with energy storage can be used for continuous drying. This kiln consisted of several units which were modeled to simulate it in operation. A model was proposed for each unit, and another based on laboratory tests for drying a wooden board by passing air across. These models were combined to produce a global model. Simulation results were then analyzed and showed that the use of storage was justified to reduce drying time. Moreover, with the judicious use of storage and air renewal, drying schedules could be produced for a better quality of dried wood

    Solar timber kilns: State of the art and foreseeable developments

    Get PDF
    Analysis of the evolution in solar heated drying kilns in recent decades shows that there have been a series of modifications to optimize their thermal and drying efficiency. Using an analysis method based on product design, we report on existing solar timber kilns. The dryers and their component units are studied, developments are noted, focusing on changing trends in technological systems. As a result of this analysis we suggest some future adaptations

    An oriented-design simplified model for the efficiency of a flat plate solar air collector

    Get PDF
    In systems design, suitably adapted physical models are required. Different modelling approaches for a solar air collector were studied in this paper. First, a classical model was produced, based on a linearization of the conservation of energy equations. Its resolution used traditional matrix methods. In order to improve the possibilities for use in design, the behaviour of the collector was next expressed in terms of efficiency. Lastly, simplified models constructed from the results obtained with the classical linearized model, and explicitly including the design variables of the collector, were proposed. These reduced models were then evaluated in terms of Parsimony, Exactness, Precision and Specialisation (PEPS). It was concluded that one of them (D2), using a low number of variables and of equations, is well suited for the design of solar air collector coupled with other sub-systems in more complex devices such as solar kiln with energy storag

    Innovation through pertinent patents research based on physical phenomena involved

    Get PDF
    One can find innovative solutions to complex industrial problems by looking for knowledge in patents. Traditional search using keywords in databases of patents has been widely used. Currently, different computational methods that limit human intervention have been developed. We aim to define a method to improve the search for relevant patents in order to solve industrial problems and specifically to deduce evolution opportunities. The non-automatic, semi-automatic, and automatic search methods use keywords. For a detailed keyword search, we propose as a basis the functional decomposition and the analysis of the physical phenomena involved in the achievement of the function to fulfill. The search for solutions to design a bi-phasic separator in deep offshore shows the method presented in this paper

    Adaptation and implementation of a process of innovation and design within a SME

    Get PDF
    A design process is a sequence of design phases, starting with the design requirement and leading to a definition of one or several system architectures. For every design phase, various support tools and resolution methods are proposed in the literature. These tools are however very difficult to implement in an SME, which may often lack resources. In this article we propose a complete design process for new manufacturing techniques, based on creativity and knowledge re-use in searching for technical solutions. Conscious of the difficulties of appropriation in SME, for every phase of our design process we propose resolution tools which are adapted to the context of a small firm. Design knowledge has been capitalized in a knowledge base. The knowledge structuring we propose is based on functional logic and the design process too is based on the functional decomposition of the system, and integrates the simplification of the system architecture, from the early phases of the process. For this purpose, aggregation phases and embodiment are proposed and guided by heuristics

    Eco-innovative Method to Improve the Distribution Phase of Product

    Get PDF
    The integration of the environmental dimension is crucial in industrial activity. Designers should integrate the new environmental constraints to adapt their approaches and methodologies in the framework of eco-innovation of industrial products and consumer goods. This paper proposes a new method integrating ecological aspects into the innovation process composed of three main stages: an analysis and structuring of the product, the formalization of the problem and the resolution phase. According to the structuring and the design objectives, actions can be selected and allow to guide the design to the most relevant modification to perform on the product. An illustration of the approach is applied on the optimization of the environmental impacts related to the logistical aspects

    Manufacturing requirements in design: The RTM process in aeronautics

    Get PDF
    A sub-unit of an aeronautical structure (fuselage, fin, wing, etc.) consists of a set of components fixed rigidly together. One of today’s major industrial challenges is to produce these sub-units out of composite materials in order to increase the level of integration and reduce and cost. This article describes a procedure to assist in the industrialisation of aeronautical components produced from composite materials in a design for manufacturing context. In a multi-expertise approach, the problem of optimising integration is combined with the feasibility of injection for the Resin Transfer Molding process. This approach then takes into account admissible manufacturing deviations, defined from a classification of the structure parts. The limits set for admissible deviations guarantee the mechanical behaviour of the assembled component and the requirements of the assembly as a whole. Finally, an industrialisation solutions space is defined. A constraint satisfaction problem solver is used to carry out this research with a spar from a horizontal plane in an aircraft used to illustrate the procedure

    L’analyse des phĂ©nomĂšnes physiques, Ă©lĂ©ments essentiels vers la rĂ©solution de problĂšmes industriels

    Get PDF
    In this paper, we present the different elements of connection between users requirements and physical phenomena created during the use of products. We propose a structured methodology which goes from the analysis of the significant moments until the identification of the appreciation criteria of the user and design variables necessary to the product definition. The time decomposition of the product use in significant moments makes it possible to identify all actions realized by the user, to extract the physical effects and to qualify them in term of relevance. The methodological tools ensure the exhaustiveness of the analysis, to define the physical sizes associated with the criteria and the design variables as well as the relations between the criteria and design variables. Then we can take into account users requirements during preliminary design phase. This methodology is applied to the integration of the user requirements at the time of the opening for a telephone foldable

    Taxonomie des connaissances en conception préliminaire

    Get PDF
    The design activity is the transformation of functional requirements into design parameters. This article presents a structuring method for the design problem exploiting existent and mastered knowledge. The proposed energy analysis leads to the structural definition of the product and the definition of a basis of functions and components. This approach allows efficient implementation of optimization models in preliminary design
    • 

    corecore